Math 150, Lecture Notes- Bonds Name

Section 4.5 Integration by Substitution
Pattern Recognition

In this section you will study techniques for integrating composite functions. The
discussion is split into two parts—pattern recognition and change of variables. Both
techniques involve a u-substitution. With pattern recognition you perform the
substitution mentally, and with change of variables you write the substitution steps.

The role of substitution in integration is comparable to the role of the Chain Rule
in differentiation. Recall that for differentiable functions given by y = F(u) and
u = g(x), the Chain Rule states that

< [Flg(a)] = Fl()g ).

From the definition of an antiderivative, it follows that

JF "(g(x))g’(x) dx = F(g(x)) + C.

These results are summarized in the following theorem.

THEOREM 4.12 Antidifferentiation of a Composite Function

Let g be a function whose range is an interval /, and let f be a function that is
continuous on /. If g is differentiable on its domain and F is an antiderivative
of f on I, then

ff (g(x)g"(x) dx = F(g(x)) + C.

If u = g(x), then du = g’(x) dx and

Jf(u) du = F(u) + C.

Examples 1 and 2 show how to apply Theorem 4.13 directly, by recognizing the
presence of f(g(x)) and g’(x). Note that the composite function in the integrand has an
outside function fand an inside function g. Moreover, the derivative g’(x) is present as
a factor of the integrand.

Outside function

Jf(g(X))g’(X) dx = F(g(x)) + C
T —~

Inside function Derivative of

inside function




Ex.1 Recognizing the f ( g(x)) g’(x) Pattern

Find J(x2 — 9)3(2x) dx

Ex.2 Recognizing the f ( g(x)) g’(x) Pattern

Find J 4x3 sin x* dx



The integrands in Examples 1 and 2 fit the f(g(x))g’(x) pattern exactly—you only
had to recognize the pattern. You can extend this technique considerably with the
Constant Multiple Rule

ka(x) dx = kff(x) dx.

Many integrands contain the essential part (the variable part) of g’(x) but are missing
a constant multiple. In such cases, you can multiply and divide by the necessary
constant multiple, as shown in Example 3.

Ex.3 Multiplying and Dividing by a Constant

Find Jt3\/t4 + 5 dt



Change of Variables

With a formal change of variables, you completely rewrite the integral in terms of u
and du (or any other convenient variable). Although this procedure can involve more
written steps than the pattern recognition illustrated in Examples 1 to 3, it is useful for
complicated integrands. The change of variables technique uses the Leibniz notation
for the differential. That is, if u = g(x), then du = g’(x) dx, and the integral in
Theorem 4.13 takes the form

ff<g<x>>g'<x> g = j et = ) - @

Ex.4 Change of Variables

Find x—zdx
(16 — x%)?



Ex.5 Change of Variables

Find Jx\/4x + 1dx



Ex.6 Change of Variables

Find J Jtan x sec? x dx



Guidelines for Making a Change of Variables

1. Choose a substitution u = g(x). Usually, it is best to choose the inner part of
a composite function, such as a quantity raised to a power.

Compute du = g’(x) dx.

Rewrite the integral in terms of the variable u.

Find the resulting integral in terms of u.

Replace u by g(x) to obtain an antiderivative in terms of x.
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Check your answer by differentiating.

The General Power Rule for Integration

One of the most common u-substitutions involves quantities in the integrand that are
raised to a power. Because of the importance of this type of substitution, it is given a
special name—the General Power Rule for Integration. A proof of this rule follows
directly from the (simple) Power Rule for Integration, together with Theorem 4.13.

THEOREM 4.13 The General Power Rule for Integration

If g is a differentiable function of x, then

f[g(x)]”g’(x) dx = % +C, n# -1l

Equivalently, if u = g(x), then

un+l
u' du = + C, n+ —1.
n+1

Ex.7 Substitution and the General Power Rule

a. J3(3x — 1)*dx =



Ex.7 Substitution and the General Power Rule

b. J(2x + 1)(x% + x) dx =

c. J3x2\/x3 —2dx =

—4x
d. f(l g dx =

e. Jcos2 xsinxdx =



Change of Variables for Definite Integrals

When using u-substitution with a definite integral, it is often convenient to determine
the limits of integration for the variable u rather than to convert the antiderivative back
to the variable x and evaluate at the original limits. This change of variables is stated
explicitly in the next theorem. The proof follows from Theorem 4.13 combined with
the Fundamental Theorem of Calculus.

THEOREM 4.14 Change of Variables for Definite Integrals

If the function u = g(x) has a continuous derivative on the closed interval [a, b]
and f is continuous on the range of g, then

b g(b)
f S(g(x)g(x) dx = f ) Sfu) du.
a gla

Ex.8 Change of Variables

2
FindJ o
0 \/1 + 2X2




Ex.9 Change of Variables

/4
Find J csc 2x cot 2x dx
w/12

=

ol

16

N ]




Integration of Even and Odd Functions

Even with a change of variables, integration can be difficult. Occasionally, you can
simplify the evaluation of a definite integral over an interval that is symmetric about
the y-axis or about the origin by recognizing the integrand to be an even or odd
function (see Figure 4.40).

Even function 0dd function
' Figure 4.40

THEOREM 4.15 Integration of Even and Odd Functions

Let f be integrable on the closed interval [—a, a].

a

1. If £ is an even function, then j f(x) dx = 2J f(x) dx.

0

2. If f is an odd function, then f f(x) dx = 0.

Ex.10 Integration of and Odd Function
/2

Evaluate J (sin®x cos x + sin x cos x) dx.
—a/2




flx) = sin® x cos x + sin x cos x
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Because fis an odd function,

/2

f(x)dx = 0.
—a/2

Figure 4.41
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({3 From Figure 4.41 you can see that the two regions on either side of the y-axis have the
same area. However, because one lies below the x-axis and one lies above it, integration

produces a cancellation effect. (More will be said about this in Section 7.1.)



